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Abstract

The Fox-Wright Psi function is a special case of Fox’s H-function and a
generalization of the generalized hypergeometric function. In the present paper
we show that the Psi function reduces to a single generalized hypergeometric
function when certain of its parameters are integers and to a finite sum of gen-
eralized hypergeometric functions when these parameters are rational numbers.
Applications to the solution of algebraic trinomial equations and to a problem
in information theory are provided. A connection with Meijer’s G-function is

also discussed.
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1. INTRODUCTION
The Fox-Wright Psi function ,W,[z] and its normalization \W[z] are hypergeo-

metric functions whose series representations are given by
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where | (z) is the Gamma function. Thus ,W,[z] is a special case of Fox’s H-function

HY'["[2] (see e.g. [1, p. 50]) and | W;[z] is a generalization of the familiar generalized

hypergeometric function ,F,[z]:

qu

51,...,ﬁq, ] HZ:: ) (@;)n o (1.2)

where the Pochhammer or shifted factorial symbol is defined by (a), =, (¢ +n)/, (a)
for non-negative integers n. Clearly, if weset A, =1 (i =1,...,p), B;=1
(¢=1,...,q) in Equation (1.1), W7[] reduces to ,F,[2] given by Equation (1.2).

In what follows we shall consider only the special case of the Fox-Wright function

where p = ¢ = 1; thus

(1.3)

The importance of ;WUt[z] has recently been indicated by its connection with elemen-
tary number theory via Fermat’s last theorem [2],[3] and in applied problems via the
solution of trinomial equations [4]. Thus it appears worthwhile studying and record-
ing further properties of the Psi function. To this end in the present paper we shall

show that ; Wi[z] reduces to a single generalized hypergeometric function when A and



B assume integer values and that when these same parameters are rational num-
bers, ,U*[z] reduces to a finite sum of generalized hypergeometric functions. Then in
section 4 we shall give further applications relevant to the solution of trinomials in
general and in particular in section 6 to certain trinomials which arise in a problem
in information theory. In section 5 we give a reduction of a particular case of Meijer’s

G-function.



2. THE PSI FUNCTION FOR INTEGER A AND B
Assume that A and B in Equation (1.3) are positive integers. Clearly, for

A=B=1
1¥q Zl =141 z (21)
(8, 1); B;

so that in this case we have reduction to the confluent hypergeometric function 1 £[z]
which converges for all z in the finite complex plane.
By using Gauss’s multiplication theorem for the Gamma function it follows that

[k ] = G () e (4 ’%) (22)

n

for positive integers k and non-negative integers n. Thus since , (o + An) =

, [A(n + a/A)] we obtain (cf. [5, p. 240, Eq. (1.26)])

a+ An) =, (a) (%) (= 1) (“Tf‘_l) (A% (2.3)

n

which when used together with Equation (1.3) yields
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for positive integers A and B. Obviously Equation (2.4) reduces to Equation (2.1)
when A= B = 1.

Similarly, for integer A > 1

(@)
(5 (550 - (F5%)al(= A

which follows from Equation (2.3) and the identity , (o — n)/, (o) = (=1)"/(1 — a),

, (a— An) = (2.5)

with n replaced by An. Thus we have also from Equations (2.3), (2.5) and (1.3) for

A and B positive integers the following:
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Note that the right hand side of Equation (2.8) diverges for z # 0 except when it
is a polynomial in which case it converges for all z. In addition, Equations (2.4),
(2.6)-(2.8) are valid for either A = 0 or B = 0 by deleting the parameters which

contain them.



3. THE PSI FUNCTION FOR RATIONAL A4 AND B
Assume now that A and B are positive rational numbers. We may always assume
that A = a/k and B = b/k where the integer pairs a, k and b, k need not be relatively

prime. Thus

| (e afk); L (8) & (oz—l—%n)i
v { (8,b/k); ] () Z:: (8 + n) n!
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n=1 >
Now partition the positive integers n according to n = kp—qg where ¢ =0,1,..., k—1
and p =1,2,3,.... Calling for the moment the Psi function in Equation (3.1) S we
obtain
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where the latter result was obtained by reversing the order of summation by setting
r = k — ¢ in the penultimate sum.

Referring to Equation (3.2) set
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Then by using Equation (2.2) we have
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which we use together with Equation (3.2) to obtain for k =1,2,3,...
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where a and b are non-negative integers, the result being valid for either ¢ = 0 or
b = 0 by deleting the parameters which contain them.
Next, from Equation (2.5) since , (o« — An) =, [ A(n — a/A)], it easily follows

that
(1 + %)n(ﬂ + %)n (e %)n[(_k)k]n

where £k is a positive integer and n is a non-negative integer. Equations (2.2) and (3.4)

s [=k(n + )] = (3.4)

may then be used together with Equation (3.2) to obtain for non-negative integers «

and b the following results for £ =1,2,3,...:
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We mention here that obviously results analogous to Equations (2.4), (3.3) etc. may
be obtained for \W7[z] defined by Equation (1.1) when the A; (z = 1,...,p) and B;
(¢ =1,...,q) are integers or rational numbers.

An interesting corollary may be obtained from either Equation (3.3) or (3.5) by
setting @ = b, o = f3; thus

koo r+1 r+2 r+k
expz:l—l—zﬁle 1;7, e T (z/ k)

r=1

where k is a positive integer.
We conclude this section by noting that when k = 1, Equations (3.3), (3.5)-(3.7)

respectively reduce after simplification to Equations (2.4), (2.6)-(2.8).



4. APPLICATION TO TRINOMIAL EQUATIONS
Interest in the solution of algebraic trinomial equations originated evidently with
Lambert (1758). Numerous other investigators studied them, notably Lagrange (1770),
Heymann (1887), Capelli (1892), Ramanujan (circa 1903 and 1913), and Mellin
(1915). Berndt [6, p. 72, p. 307] gives a brief history of the subject while Belar-
dinelli [7, p. 30] presents a detailed account including an extensive bibliography.
Mellin’s result [8] (see also [7, p. 37] and [9, p. 81]) may be given elegantly by

employing the Psi function as follows: for real = the positive root of the trinomial

equation
yVpay¥ 9 —-1=0, N>Q>0 (4.1)
is given by
(5%
y=41¥7 N Jl\f 0 L - (4.2)
(1 —I_ N> _T) )

where () and N are real numbers and
o] < (Q/N)"N(1 = Q/N)INT < 2 (4.3)

Belardinelli observed [7, p. 56] that when N and () are integers, then the solution
y given by Equation (4.2) may be written as a sum of N generalized hypergeometric
functions defined by Equation (1.2). However his result is incorrect. Such a represen-
tation in terms of generalized hypergeometric functions may be obtained immediately
from Equation (3.7) by setting a = 1/N, 5 =14+1/N,a=N—-Q,b=Q, k=N,
and z = —z. Thus we obtain for positive integers N > () > 1 that the positive root

of Equation (4.1) is given by
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where
£=(=Q)N - Q" (—a/N)Y . (4.5)
We note that since £ must satisfy |£] < 1 in order for each yi1 Fy[€] in Equation (4.4)
to converge, then Equation (4.5) yields the inequality (4.3). In particular, if |z| <1,
then we always have |¢| < 1 which will prove useful in section 6.
We remark that it is easy to show that the positive solution y of Equation (4.1)

is also given by

1 X , L—I—QT z”
R I e
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1

In addition, y~! is the positive root of z¥ — 229 —1 = 0.

Other representations for the positive root of Equation (4.1) (with @ replaced by
N — @) may be given. For by using [2, Eqgs. (9) and (10)] the trinomial equation

yN/Q—I—:L'y—1:0

for integers N > () > 1 has the positive solution

)= T (Q/N,Q/N) .
Yl
where
|
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thus it is easy to see that

yN—I—:L'yQ—1:0

has the solution
1/Q

y— | wr (Q/N,Q/N) L

(1+Q/N, -1+ Q/N) ;
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Note that y~! is also the positive root of zV — 22V=% — 1 = 0.
Further, a computation similar to that employed in deriving Equations (3.3) and
(3.5)-(3.7), but more complex in its details (so that for brevity we shall omit it here),

yields the result:

N N : _\@Q
\I/* (Q/ 7@/ ) ’ — | = ( l’) 5
(L+Q/N,-1+Q/N) ; N
e @ 1m0 fron (B o
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R 17]\7 N-Q’' N> 7N+ N_QvN—I'Qv 7N+Q ) (48)
NZN-1 r+1 r+N-—1 . 7
N ? ’

where 7 is given by Equation (4.6), 6 is defined by

0 N£Q+1
1 N=Q+1

and x satisfies the inequality (4.7).
In particular, setting @) = 1 in Equation (4.8) we see that the positive root of the

equation
yNfay—1=0, N>2

is given by
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5. CONNECTION WITH MEIJER’S G-FUNCTION
In [10] Boersma shows for positive integers a; (¢ =1,...,p), b; (i =1,...,q), and
k that the Fox-Wright Psi function
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In particular, for p = ¢ =1 we get

(a,a/k) ,Z —27‘(1+b5d_k @ ,(ﬂ) ﬁ
(8,b/k) @ (a) ¥
Nkt | 1= &, ] — adest
G |(2) S (5.1)
“ k /) b - B b=
0,4,.... 21— 21— &=L

Now comparing the latter result with Equation (3.3) we obtain for positive integers

a,b, and k:

(ha (_Z)k a®l 1= %7 ;1 — a+s_1 _ 9" viior [a , (@) b°
a,k+b k ﬁ 1 k=1 B B4+b—1 - % o
T U , (B) a
, Eo (a4 2r) 27 Ls+2,.. 1-|-a+a1 5 /z\* a
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See [11, Ch. V], for example, for an introduction to the G-function.
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6. A PROBLEM IN INFORMATION THEORY

We consider a noiseless and memoryless communication channel [12] with symbols
s1 and sy3. The time for symbol s; (s2) to pass through the channel is the positive
integer Q(N), N > Q. We note that the case N = @ is trivial and will not be
discussed.

A transmission over the channel can be viewed as a sequence s whose terms are s;
or so. We define the length of s to be ¢;Q) + ¢ N, where ¢; is the number of occurrences
of s; in s. Let 5,, n an integer, be the set consisting of all sequences of length n,
and let |S,,| denote the magnitude or cardinal number of S,,. Since there is only one
sequence of length zero (the empty sequence), |So| = 1. There are no sequences of
negative length, so [S_p,/| =0, n # 0.

The maximal amount of “information,” in units of bits per unit time, that can be

transmitted over the channel is called the capacity €' and is defined by
C =limsup,_ . log, /]5] - (6.1)

The original definition was given by Shannon [12, p. 37] who used the ordinary limit,
which is not always defined (i.e., @ = 2, N = 4, |Ss,41] = 0). The limit superior
is always defined since |5, is bounded from above by 2". Other authors have noted
and corrected Shannon’s definition, but the error nevertheless has been perpetuated
through much of the literature. However, in practice, the following correct result [12,

p. 37] is often used to express C.

Theorem (Shannon): The capacity is given by C' = log,y, where y is the unique

positive root of the equation 2V — V=9 —1 = 0.

For the same reason that Shannon’s definition is flawed, his proof of the theorem,
using the asymptotic behavior of finite differences, does not hold. Certainly others
have correctly proved the result, but we offer below a novel proof using complex
analysis. We note that a similar method has been employed by Kuich [13] in his

study of the entropy of context-free languages.
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If we place the terms sq, s, respectively, onto the end of nonempty sequences of
length n— (), n— N, we obtain in each case a sequence of length n. Since the last term
of a nonempty sequence of length n must be either s; or sy, we see that in general

the |5, | satisfy the recurrence relation
|Sn|::|5%—Q|+_|Sn—N|+_5®z

where ég,, = 1 if and only if n = 0.
We define the z-transform [14] of a sequence {a,} to be the power series Y a,z".

n=0
Applying the z-transform to the above, we arrive at the formal equation

PN A A e e W S P i
n=0 n=0 n=0

The above result is valid for |z]| less than the radius of convergence of the power series

S(z) = >_|S5,|z" and so we have

n=0

B 1
Tl —2@ N

5(z)
Since |5, < 2", S(z) is analytic in a neighborhood of z = 0 and so may be
expressed uniquely as a Maclaurin series. Therefore, the radius of convergence of
S(z), which is given by 1/limsup,_, M, is equal to the magnitude of the root of
smallest modulus of 1 — 29 — 2V = 0.
Now noting that
L— 2|9 = 2|V < |1 =29 =2V

N

we see that the positive root r of 1 — 2% — 2N = 0 is the root of smallest modulus;

see also [15, p. 122, Theorem (27,1)]. Thus we have

r ::1/hnlsupn—mo G|5%|;
and so

y=r"'= limsup, .. /]5]

is the positive root of zV — zN=9 —1 = 0.
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Next, by Equation (6.1)

C = limsup,_ . log, 1/|5,|

= log, limsup, .. 1/]5,]

= logyy

and the theorem is proved.

Thus by setting @ = —1, for example, in Equation (4.4) we have the following

Corollary: For N > @ > 1 the capacity C = C(N, Q) is given by

N—
— _ﬁf: ’ %—I' NQT)
N =L+ 1 = 2!
F Loa(r)y ooy p(r) + 552545 v(r), o v(r) + 951 ¢
+ N r+1 r+N .
N T N ’
where
r 1 r 1
M(T)—ﬁ‘Fma V(r)_ﬁ_N—Q
and

£=(—Q)¥N - Q)" 9/NY .
Closed forms for the capacity for 1 < ) < N < 4 are of course readily given since

polynomial equations up to the fourth degree are “solvable by radicals.” Thus we

have, for example, the following:

sy _ LV
2
soan _ L[| (VAL = VI (VAL & vaTy
3 2 2
oo VA [ (V= vE\" v v
3 2 2
1
o2 _ L
2 5 (2 + f)
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In general, however, 2°V:9) may be expressed by means of the results previously
given in terms of a finite number P of hypergeometric functions p 4 Fplz] where
P =Nor N—1. In [16] and [17] extensive and up to date collections of reductions

for single, double, and multiple generalized hypergeometric functions are provided.
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